If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12x^2-52x+42=0
a = 12; b = -52; c = +42;
Δ = b2-4ac
Δ = -522-4·12·42
Δ = 688
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{688}=\sqrt{16*43}=\sqrt{16}*\sqrt{43}=4\sqrt{43}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-52)-4\sqrt{43}}{2*12}=\frac{52-4\sqrt{43}}{24} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-52)+4\sqrt{43}}{2*12}=\frac{52+4\sqrt{43}}{24} $
| 3m+5(-6-6m)=6(-7m-5 | | 25=20+1/x | | X+1/4=2x-5/6 | | 5(x+1)+3=3x+2(2+x) | | 1/6d+2/3=1/4(d-4) | | 5x-6x+8=10 | | 3x+7=14−5x | | 1-x=4×-8×-2 | | 3(z+7)=218 | | (20+x)/17=16-x | | -16t^2+42t+36=0 | | 2(4z-1)=3z+2) | | 4.3v=6.09+1.4v | | 20+x/17=16-x | | 17/4x=20 | | 174x=20 | | z/2=(z-1)/2 | | 12+5v=6+8v | | z/2=z+1/2 | | 3v-8=20 | | 20x-44=3x+186 | | 5x+1=3(x+1)=9x+4 | | 4.9x^2-15x+43=0 | | 1/4y-2=1/8y | | 12+(5-3y)=-9(y-1)-2 | | 0=4.9x^2-15x+43 | | 1b+4.4+2.1=0.7b+10.24 | | 2x-19=4x-1 | | X+33=2x-23 | | -5m-18=-2(m-6) | | b+4.4+2.1=0.7b+10.24 | | 93=7(5-4b)+2 |